V 566 Oph de 1998 à 2002

$$\alpha = 17h \ 56.9 \ m$$
 $\delta = +4^{\circ} \ 59' \ (2000)$

Michel DUMONT

1. INTRODUCTION

V566 Oph est l'une des étoiles que j'ai le plus observée depuis 5 ans. :

1998: 116 estimations visuelles, 1999: 125, 2000: 112, 2001: 178, 2002: 146.

C'est une étoile très vivante, toujours en train de varier, accessible aux jumelles, même lorsque la Lune est présente.

Selon le GCVS (1), elle varie de 7,46 à 7,96 en 0,409 645 69 jour. C'est une étoile de type EW et de spectre F4V.

On assiste ainsi à deux éclipses durant sa période. Il y a donc une éclipse toutes les 4h55m environ. Dans le GCVS, le Min I est annoncé à la date :

J.D. 2 441 835,8617 + 0.409 645 69 E

Les étoiles de comparaison utilisées furent :

C: HD 163 442 V = 7,4 Sp. B8 D: HD 163 489 V = 7.9 K2 E: HD 163 697 V = 8,7 F5

Les couleurs ne sont pas très voisines de celle de la variable, mais mon idée est qu'il vaut mieux, pour les estimations visuelles, choisir des étoiles très proches angulairement de la variable, plutôt que des étoiles exactement de la même couleur, mais situées fort loin.

2. LES OBSERVATIONS

J'observe V566 Oph à chaque séance d'observations, sans jamais consulter d'éphéméride. En général, j'effectue deux ou trois estimations par séance, mais je l'observe plus intensément si elle faiblit sensiblement, car c'est l'indice d'un minimum prochain. Dans ce cas, si c'est possible, je l'observe jusqu'à ce que l'éclat soit remonté.

J'ai traité les observations année par année ; pour 1998 , 1999 et 2001 , j'ai tracé la courbe moyenne compositée sur l'éphéméride donnée plus haut. Les trois courbes obtenues sont très similaires et la figure 1 montre la courbe obtenue en 2001.

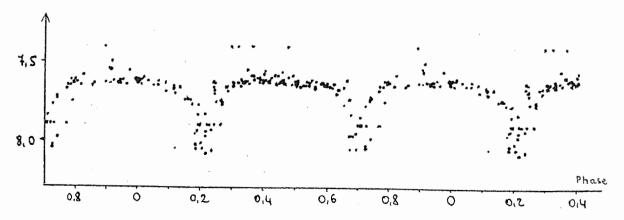


Figure 1: Courbe de lumière moyenne de V566 Oph obtenue par compositage des 178 observations visuelles effectuées en 2001.

Le minimum principal, voisin de 8,1 semble un peu plus profond que le minimum secondaire, mais visuellement, la confusion est courante. Pendant les observations, on ne sait pas de quel minimum il s'agit. Sur cette courbe, le Min I se produit à la phase 0,2 et le Min II à la phase 0,7. L'éphéméride du GCVS est donc obsolète, comme l'est aussi l'éphéméride JD 2 440 418.540 + 0.409 643 60 E donnée dans l'atlas des diagrammes O-C (2).

Pendant cette période de cinq années, 27 minimums furent convenablement observés. Le tableau de la page 3 regroupe les informations que l'on peut en extraire :

- La première colonne donne la date.
- Puis l'on trouve le type du minimum observé, I pour le minimum principal et II pour le minimum secondaire.
- L'instant UT du minimum, déterminé par la méthode de symétrie soigneusement réfléchie.
- L'erreur possible commise lors de la détermination précédente.
- JJH : la date du minimum exprimée en jours juliens héliocentriques.
- La phase de ce minimum, calculée à partir de l'éphéméride du GCVS.
- L'erreur possible traduite en phase.
- La valeur de O-C exprimée en jours, calculée à partir de la même éphéméride.

La figure 2 montre l'observation de deux minimums : le Min II du 11 juillet 1999 et le Min I du 4 août 1999.

La figure 3 montre le minimum du 4 août 1999, dont le nuage de points a été enrichi par les points obtenus par symétrie. On comprend mieux sur cette figure comment on peut obtenir la précision annoncée dans le tableau. Bien évidemment, cette méthode suppose que la courbe de lumière est symétrique par rapport à l'instant du minimum. Dans une étude photoélectrique très précise, cette hypothèse ne serait pas admissible; mais pour la détermination de minimums observés visuellement, l'erreur due à l'asymétrie éventuelle de la courbe est négligeable!

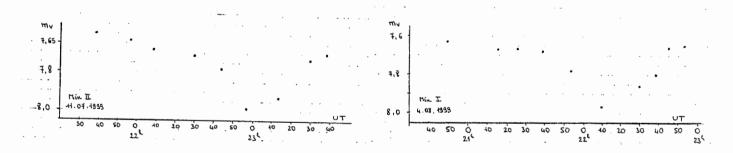


Figure 2: à gauche: Observation du Min II de V566 Oph le 11 juillet 1999. A droite: Observation du Min I le 4 août 1999.

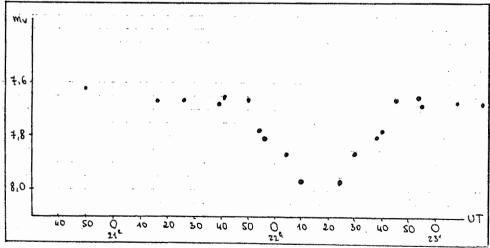


Figure 3: Le Min I du 4 août 1999. Aux points obtenus directement (fig. 2), s'ajoutent ici les points analogues obtenus par symétrie.

MINIMUMS DE V566 Oph de 1998 à 2002

Date	Type du Min.	UT	+/-	JJH 2 450 000 +	Phase	+/-	O-C
03.07.98	ı	23h 17	06mn	998,4752	0,167	0,010	0,068
12.07.98	1	23h 20	07mn	1007,4770	0,142	0,012	0,058
20.07.98	11	23h 07	08mn	1015,4677	0,648	0,014	
25.07.98	II	21h 02	07mn	1020,3807	0,641	0,012	
14.08.98	11	23h 11	04mn	1040,4691	0,680	0,007	
12.09.98	I	19h 57	06mn	1069,3321	0,138	0,010	0,057
18.06.99	l II	23h 57	04mn	1348,5031	0,632	0,007	
03.07.99		23h 13	07mn	1363,4724	0,174	0,012	0,071
11.07.99	11	23h 02	04mn	1371,4646	0,684	0,007	
12.07.99	ı	23h 27	05mn	1372,4819	0,167	0,008	0,068
04.08.99	ı	22h 17	07mn	1395,4322	0,192	0,012	0,079
18.07.00	ı	22h 42	03mn	1744,4504	0,192	0,005	0,079
20.09.00	ı	20h 38	05mn	1808,3598	0,204	0,008	0,083
	, 		r	1		Υ	1
18.05.01	1	21h 51	03mn	2048,4148	0,210	0,005	0,086
21.06.01	l	22h 00	08mn	2082,4218	0,226	0,014	0,092
01.07.01	ll ll	22h 27	07mn	2092,4405	0,683	0,012	
26.07.01	ll ll	22h 41	05mn	2117,4494	0,733	0,008	
11.08.01	11	21h 42	06mn	2133,4075	0,689	0,010	
12.08.01	1	22h 29	10mn	2134,4401	0,209	0,017	0,086
21.08.01	1	22h 41	06mn	2143,4477	0,198	0,010	0,081
			T	T - 4- 4 4 - 0 - 0		T	T
18.07.02	1	22h 26	05mn	2474,4393	0,193	0,008	0,079
04.08.02	ll ll	22h 44	06mn	2491,4504	0,719	0,010	
05.09.02	II	21h 37	05mn	2523,4021	0,718	0,008	
13.09.02	1	21h 20	05mn	2531,3896	0,216	0,008	0,089
28.09.02	ll l	20h 24	08mn	2546,3494	0,735	0,014	
29.09.02	ı	20h 51	05mn	2547,3681	0,222	0,008	0,091
30.09.02	11	21h 05	07mn	2548,3777	0,687	0,012	

La figure 4 montre les O-C obtenus lors des minimums principaux. Leur croissance de 1998 à 2001 est flagrante. Les valeurs obtenues se placent très bien sur le prolongement de la courbe publiée dans l'Atlas des O-C (2). Mais de 2001 à 2002, il semble que ces O-C n'aient pas augmenté. Les observations des années futures pourront confirmer (ou infirmer) cette tendance.

Figure 4: Evolution des O-C du minimum primaire de V566 Oph de 1998 à 2002. L'O-C est calculé à partir de l'éphéméride du GCVS. En abscisse, c'est la date en JJ: 2 450 000 + ...; en ordonnée, apparaît l'O-C exprimé en jours.

La figure 5 montre les phases auxquelles se sont produits les minimums principaux et secondaires. Evidemment, l'évolution de la phase des Min I reproduit exactement la courbe des O-C. La dispersion de la phase observée des Min II est plus grande, si bien qu'il n'est pas possible d'affirmer que la phase du Min II a subi une évolution identique ou différente de l'évolution de la phase du Min I.

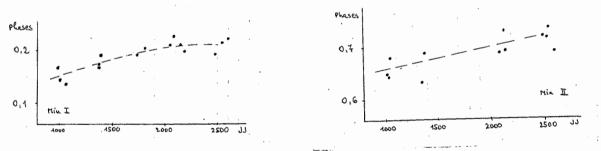


Figure 5: Phases auxquelles se sont produits les Min I, à gauche et Min II, à droite. En abscisse apparaît la date en JJ (2 450 000 + ...) et en ordonnée la phase.

3. CONCLUSION

Les observations visuelles de V566 Oph permettent de noter l'évolution des O-C. Il me paraît utile de poursuivre ces observations, afin de savoir si les O-C qui ont commencé à croître vers 1970 (2), vont maintenant fléchir et montrer peut-être, dans le futur, des variations périodiques. Si l'on parvenait à observer plus soigneusement les Min II, on pourrait sans doute mettre en évidence un éventuel glissement de phase entre les deux minimums, ce qui traduirait une rotation de l'orbite de chacune des composantes.

Michel DUMONT

Références:

- 1. General Catalogue of Variable stars, Volume II; P.N. Kholopov. (Moscou 1985).
- 2. An Atlas of O-C diagrams of eclipsing binary stars; J.M.Kreiner, Chun-Hwey Kim et II-Seong Nha (Wydawnictwo Naukowe Akademii Pedagogicznej Krakow).